Measures of Anisotropy and the Universal Properties of Turbulence
نویسنده
چکیده
Local isotropy, or the statistical isotropy of small scales, is one of the basic assumptions underlying Kolmogorov’s theory of universality of small-scale turbulent motion. The literature is replete with studies purporting to examine its validity and limitations. While, until the midseventies or so, local isotropy was accepted as a plausible approximation at high enough Reynolds numbers, various empirical observations that have accumulated since then suggest that local isotropy may not obtain at any Reynolds number. This throws doubt on the existence of universal aspects of turbulence. Part of the problem in refining this loose statement is the absence until now of serious efforts to separate the isotropic component of any statistical object from its anisotropic components. These notes examine in some detail the isotropic and anisotropic contributions to structure functions by considering their SO(3) decomposition. After an initial discussion of the status of local isotropy (section 1) and the theoretical background for the SO(3) decomposition (section 2), we provide an account of the experimental data (section 3) and their analysis (sections 4, 5 and 6). Viewed in terms of the relative importance of the isotropic part to the anisotropic parts of structure functions, the basic conclusion is that the isotropic part dominates the small scales at least up to order 6. This follows from the fact that, at least up to that order, there exists a hierarchy of increasingly larger power-law exponents, corresponding to increasingly higher-order anisotropic sectors of the SO(3) decomposition. The numerical values of the exponents deduced from experiment suggest that the anisotropic parts in each order roll off less sharply than previously thought by dimensional considerations, but they do so nevertheless.
منابع مشابه
Internal combustion engines in cylinder flow simulation improvement using nonlinear k-ε turbulence models
The purpose of this paper is to studying nonlinear k-ε turbulence models and its advantages in internal combustion engines, since the standard k-ε model is incapable of representing the anisotropy of turbulence intensities and fails to express the Reynolds stresses adequately in rotating flows. Therefore, this model is not only incapable of expressing the anisotropy of turbulence in an engine c...
متن کاملExperimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model
Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...
متن کاملEffect of impeller speed on properties of quiescent zone and entrainment in mechanical flotation cells
Flotation process in mechanical cells is carried out in highly turbulent conditions. In this work, the impact of impeller speed on four characteristics of the quiescent zone, i.e. zone height, turbulence, solid percentage, and gas holdup, and their relationship with the entrainment is investigated, and it is shown why at a higher impeller speed, entrainment is not significant. The height of the...
متن کاملAnisotropy in Elastic Properties of Porous 316L Stainless Steel Due to the Shape and Regular Cell Distribution
In this study, two-dimensional finite element modeling was used to study the simultaneous effect of the cell shape and regular cell distribution on the anisotropy of the elastic properties of 316L stainless steel foam. In this way, the uniaxial compressive stress-strain curve was predicted using a geometric model and fully solid 316L stainless steel. The results showed that the elastic tangent ...
متن کاملThe Universal Scaling Exponents of Anisotropy in Turbulence and their Measurement
The scaling properties of correlation functions of non-scalar fields (constructed from velocity derivatives) in isotropic hydrodynamic turbulence are characterized by a set of universal exponents. It is explained that these exponents also characterize the rate of decay of the effects of anisotropic forcing in developed turbulence. This set has never been measured in either numerical or laborato...
متن کاملAn Investigation Into the Effects of Friction and Anisotropy Coefficients and Work Hardening Exponent on Deep Drawing With FEM
Large strains, anisotropy of mechanical properties of materials and Coulomb friction in contact regions are some properties in the analysis of deep drawing process. In this research, the effects of different parameters such as anisotropy coefficient, work hardening exponent and friction coefficient on deep drawing process of drawing quality steel are studied. For this purpose, the finite elemen...
متن کامل